Predictive Crime Modeling

Chicago - A Case Study

Katherine Schinkel

Scenario

The Chicago Police Department (CPD) has limited resources (officers, patrol cars, etc.). In an effort to better deploy these resources, the CPD would like to target areas that are predicted to have high crime concentration.

Kernel Density Estimation

$$\hat{f}_h(x) = \frac{1}{nh} \sum_{i=1}^n K\Big(\frac{x - x_i}{h}\Big),$$

where **K** is the kernel function and **h** is the smoothing parameter (bandwidth)

http://research.cs.tamu.edu/prism/lectures/pr/pr_I7.pdf

Kernel Density Estimation

Large h

Low Variance, High Bias

High Variance, Low Bias

Small h

Build a Training Set - Results

	response 🌣	x \diamond	у ¢	assault.density [‡]	bike.min.distance	liquor.min.distance 🏺	housing.min.distance ‡
36133	0	355377.3	594275.4	1.134490e-09	804.009381	333.2899222	701.252761
36304	0	354777.3	594475.4	1.319335e-09	791.597094	38.5786120	275.442688
36305	0	354977.3	594475.4	1.280002e-09	862.556889	169.0004584	394.258182
36306	0	355177.3	594475.4	1.188713e-09	970.248842	1 <mark>1</mark> 8.6137652	561.257832
36307	0	355377.3	594475.4	1.054665e-09	999.037050	185.9284403	744.702084
36477	0	354577.3	594675.4	1.253620e-09	967.618820	227.8076056	468.106390
36478	0	354777.3	594675.4	1.255907e-09	986.7 <mark>44</mark> 450	223.4178531	467.647765
36479	0	354977.3	594675.4	1.205782e-09	1044.530056	265.1715426	546.136679
36480	0	355177.3	594675.4	1.106858e-09	1 <mark>13</mark> 5.086545	104.0005127	676.635878
36481	0	355377.3	594675.4	9.698520e-10	1195.708564	176.9640254	835.108946
141721	1	357230.3	554378.4	5.301562e-10	12155.353075	1274.7153375	1882.045414
14076	1	358654.9	566054.1	2.695123e-09	665.127002	302.9782443	472.124463
141961	1	358320.9	561293.1	2.667389e-09	5166.704588	445.6389323	1813.260435

threat

How do we evaluate the Logistic Model?

What if the relationships are not linear?

An Introduction to Statistical Learning. James, Witten, Hastie, and Tibshirani.

Support Vector Machine Modeling

Linear SVM

Quadratic SVM

Radial Basis Function Kernel SVM

